Synthesis of plus- and minus-strand RNA in rotavirus-infected cells.

نویسندگان

  • S Stacy-Phipps
  • J T Patton
چکیده

The genomes of the rotaviruses consist of 11 segments of double-stranded RNA. During RNA replication, the viral plus-strand RNA serves as the template for minus-strand RNA synthesis. To characterize the kinetics of RNA replication, the synthesis and steady-state levels of viral plus- and minus-strand RNA and double-stranded RNA in simian rotavirus SA11-infected MA104 cells were analyzed by electrophoresis on 1.75% agarose gels containing 6 M urea (pH 3.0). Synthesis of viral plus-strand and minus-strand RNAs was detected initially at 3 h postinfection. The steady-state levels of plus- and minus-strand RNAs increased from this time until 9 to 12 h postinfection, at which time the levels were maximal. Pulse-labeling of infected cells with [3H]uridine showed that the ratio of plus- to minus-strand RNA synthesis changed during infection and that the maximal level of minus-strand RNA synthesis occurred several hours prior to the peak of plus-strand RNA synthesis. No direct correlation was found between the levels of plus-strand and minus-strand RNA synthesis in the infected cell. Pulse-labelling studies indicated that both newly synthesized and preexisting plus-strand RNA can act as templates for minus-strand RNA synthesis throughout infection. Studies also showed that less than 1 h was required between the synthesis of minus-strand RNA in vivo and its release from the cell within virions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of HCV Plus-and Minus-Strand RNA in PBMCs of Responders and non-Responders of Chronically Infected Patients Receiving Ribavirin and Interferon Therapy

Background and Aims: Hepatitis C virus (HCV) can cause hepatocellular carcinoma (HCC) in a significant proportion (≈ 20 %) of individuals with chronic HCV infection (CHC). Currently, CHC is treated with peginterferon and ribavirin, which depending on genotype approximately 50 to 70% of patients are cured. The so-called “extrahepatic HCV infection” or viral replication in regio...

متن کامل

Short-lived minus-strand polymerase for Semliki Forest virus.

Semliki Forest virus (SFV)-infected BHK-21, Vero, and HeLa cells incorporated [3H]uridine into 42S and 26S plus-strand RNA and into viral minus-strand RNA (complementary to the 42S virion RNA) early in the infectious cycle. Between 3 and 4 h postinfection, the synthesis of minus-strand RNA ceased in these cultures, although the synthesis of plus-strand RNA continued at a maximal rate. At the ti...

متن کامل

Recovery and characterization of a replicase complex in rotavirus-infected cells by using a monoclonal antibody against NSP2.

Replication of the rotavirus genome involves two steps: (i) transcription and extrusion of transcripts and (ii) minus-strand RNA synthesis in viral complexes containing plus-strand RNA. In this study, we showed evidence for the importance of the viral nonstructural protein of rotavirus, NSP2, in the replication of viral RNAs. RNA-binding properties of NSP2 were tested by UV cross-linking in viv...

متن کامل

Rotavirus replication: plus-sense templates for double-stranded RNA synthesis are made in viroplasms.

Rotavirus plus-strand RNAs not only direct protein synthesis but also serve as templates for the synthesis of the segmented double-stranded RNA (dsRNA) genome. In this study, we identified short-interfering RNAs (siRNAs) for viral genes 5, 8, and 9 that suppressed the expression of NSP1, a nonessential protein; NSP2, a component of viral replication factories (viroplasms); and VP7, an outer cap...

متن کامل

Rotavirus RNA replication: single-stranded RNA extends from the replicase particle.

The rotavirus genome consists of 11 segments of dsRNA that are replicated asymmetrically with plus strand RNA serving as the template for minus strand RNA synthesis. In this study, we have used non-denaturing gel electrophoresis to examine subviral particles that synthesize dsRNA (replicase particles), for possible changes in structure during RNA replication. Analysis of SVPs purified from simi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 61 11  شماره 

صفحات  -

تاریخ انتشار 1987